Topology

Problem Sheet 8

Deadline: 18 June 2024, 15h

Exercise 1 (5 Points).

Let $(X_i, \mathcal{T}_i)_{i \in I}$ be a family of topological spaces. such that the space $\prod_{i \in I} X_i$ equipped with the product topology is locally compact.

- a) Show that every X_i is locally compact for i in I. Furthermore, show that for all but finitely many i's in I, the space X_i must be compact.
- b) For which non-empty index set I is the product $\prod_{i \in I} (\mathbb{R}, \mathcal{T}_{eucl})$ locally compact?

Exercise 2 (7 Points).

Consider $\mathbb N$ with the discrete topology.

- a) Describe all compact subsets of \mathbb{N} .
- b) Is \mathbb{N} compact? Is it locally compact?
- c) Is the map $f: \mathbb{N} \to \mathbb{N}$ continuous? $n \mapsto \begin{cases} 0, \text{ for } n \text{ even} \\ 1, \text{ otherwise} \end{cases}$
- d) Is it possible to extend f to a continuous map $\tilde{f}: X \to X$ such that $\tilde{f}_{|\mathbb{N}|} = f$, where X is the one-point compactification of \mathbb{N} ?

Exercise 3 (5 Points).

For every natural number k in \mathbb{N} , consider the following loop on \mathbb{S}^1 based on (1,0):

$$\begin{array}{rcl} \beta_k: & [0,1] & \rightarrow & \mathbb{S}^1 \\ & t & \mapsto & (\cos(2\pi i k t), \sin(2\pi i k t)) \end{array}$$

Produce an explicit homotopy between $\beta_k \star \beta_\ell$ and $\beta_{k+\ell}$.

Exercise 4 (3 Points).

Given two topological spaces X and Y, the continuous maps $f, g : X \to Y$ are homotopic if there is a continuous map $H : X \times [0, 1] \to Y$ (with respect to the product topology on $X \times [0, 1]$) such that

$$H(x,0) = f(x)$$
 und $H(x,1) = g(x)$ für alle $x \in X$.

If f and g are homotopic via the homotopy H with

$$f(x_0) = g(x_0) = y_0$$
 and $H(x_0, t) = y_0$,

show that their pushforwards f_{\star} and g_{\star} induce the same group homomorphism $\pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$.

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im entsprechenden Fach im Keller des mathematischen Instituts.